Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Dispersive XAFS Study on the Laser-Induced Reduction of a Rh$$^{3+}$$ ion complex; Presence of a Rh$$^{+}$$ Intermediate in Direct Photoreduction

Saeki, Morihisa*; Matsumura, Daiju; Nakanishi, Ryuzo*; Yomogida, Takumi; Tsuji, Takuya; Saito, Hiroyuki*; Oba, Hironori*

Journal of Physical Chemistry C, 126(12), p.5607 - 5616, 2022/03

 Times Cited Count:1 Percentile:13.38(Chemistry, Physical)

The reaction mechanism of the direct photoreduction of a Rh$$^{3+}$$ ion complex to a Rh$$^{0}$$ species induced by pulsed ultraviolet laser irradiation was studied using dispersive X-ray absorption fine structure (DXAFS) spectroscopy. The time-resolved X-ray absorption near edge structure (XANES) showed the absence of isosbestic points and suggested that more than two Rh$$^{n+}$$ species contribute toward the direct photoreduction of Rh$$^{3+}$$. Analysis of the time-resolved XANES data by singular value deposition showed that the direct photoreduction involves three Rh$$^{n+}$$ species. Multivariate curve resolution by alternating least-squares analysis (MCR-ALS) of the time-resolved XANES data gave pure spectra and concentration profiles of the three Rh$$^{n+}$$ species. The Rh$$^{n+}$$ species were assigned to Rh$$^{3+}$$, Rh$$^{+}$$, and Rh$$^{0}$$ species based on the features of the pure XANES spectra. The concentration profiles suggested that the direct photoreduction proceeds in the order of Rh$$^{3+}$$ $$rightarrow$$ Rh$$^{+}$$ $$rightarrow$$ Rh$$^{0}$$. A reaction mechanism, which was proposed involving photoreductions of Rh$$^{3+}$$ and Rh$$^{+}$$, photoinduced autocatalytic reductions of Rh$$^{3+}$$ and Rh$$^{+}$$, and photooxidation of Rh$$^{+}$$, well reproduced the concentration profiles of three Rh$$^{n+}$$ species.

JAEA Reports

None

Matsumoto, Shiro*

PNC TJ1609 93-002, 14 Pages, 1993/03

PNC-TJ1609-93-002.pdf:0.25MB

no abstracts in English

Oral presentation

Coexistence effect of molybdenum ion in the laser-induced particle formation of palladium

Saeki, Morihisa; Taguchi, Tomitsugu; Matsumura, Daiju; Nakashima, Nobuaki*; Oba, Hironori

no journal, , 

no abstracts in English

Oral presentation

Development of analytical methods for $$^{107}$$Pd in high-level radioactive wastes using laser-induced particle formation

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Magara, Masaaki

no journal, , 

$$^{107}$$Pd contained in high-level radioactive wastes (HLW) is a long-lived fission product. The procedure for $$^{107}$$Pd determination in HLW is demanded for safety assessment of geological disposal. Radiation measurement is difficult due to very low energy of beta radiation of $$^{107}$$Pd. Chemical separations and mass spectrometry methods are superior to the radiation measurement, but it has some problems on complicated analysis processes and $$^{107}$$Ag isobar contamination. We performed a novel procedure for $$^{107}$$Pd determination by laser-induced particle formation to overcome those problems. In this study, Pd separation by laser-induced particle formation was applied to the analysis of simulated HLW solutions. ICP-MS measurements demonstrated that the recovery ratio of Pd depended on solutions and ethanol concentrations in laser irradiation. The low contamination ratio indicated the high elemental selectivity of laser-induced particle formation.

Oral presentation

Development of Pd separation technique based on laser-induced particle formation for determination of $$^{107}$$Pd in HLW with ICP-MS

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Magara, Masaaki

no journal, , 

Inventory estimation of long-lived fission products (LLFPs) in high-level radioactive waste (HLW) is indispensable for the long-term safety assessment of geological repository. Reliability of the estimated inventory is verified with actual measurement values which are drawn from proven analytical techniques. There has been increasing interest in the development of new determination methods of Pd-107 which is one of the LLFPs with a half-life of 6.5$$times$$10$$^{6}$$ y because little measured data has been reported. Major difficulty in determination of Pd-107 involves the poor recovery of Pd in separation step required prior to measurement. In this study, a highly selective separation technique based on laser-induced microparticle formation has been applied to Pd separation. The recovery percentage of Pd from a simulated HLW solution were affected by irradiation time and laser pulse energy. The maximum recovery percentage of 60% was achieved by 20-min irradiation at the energy of 100 mJ.

Oral presentation

Development of Pd separation technique based on laser-induced particle formation for determination of $$^{107}$$Pd in radioactive wastes with mass spectrometry

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Kitatsuji, Yoshihiro

no journal, , 

Palladium-107, which is one of the long-lived fission products in high-level radioactive waste (HLW), is a pure beta emitter with a half-life of 6.5$$times$$10$$^{6}$$ y. The inventory estimation of $$^{107}$$Pd is demanded for the long-term safety assessment of geological repository. ICP-MS is suitable for the determination of $$^{107}$$Pd because radiometry with a low beta energy of 33 keV is practically inapplicable. However, cumbersome chemical separation accompanied with highly radioactive sample treatment is still necessary prior to the measurement with ICP-MS. To minimize radioactive contamination and radiation exposure, simplified procedure is desirable. In this study, a simple separation technique based on laser-induced microparticle formation has been applied to Pd separation in a simulated HLW solution. Sufficiently high decontamination factors of coexisting elements ($$>$$ 1000) were observed, indicating that the proposed method achieved highly-selective separation of Pd.

Oral presentation

Non-contact Pd separation based on laser-induced particle formation for determination of $$^{107}$$Pd with ICP-MS

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Kitatsuji, Yoshihiro

no journal, , 

Oral presentation

DXAFS study on laser-induced photoreduction mechanism of Rh$$^{III}$$ ion complexes; Extraction of intermediates information by multivariate spectral analysis

Saeki, Morihisa*; Matsumura, Daiju; Nakanishi, Ryuzo*; Yomogida, Takumi; Tsuji, Takuya; Saito, Hiroyuki*; Oba, Hironori*

no journal, , 

The precious metal (PM) ions complexed with negative ions and water molecules in solution has a charge transfer absorption band in the UV region. When alcohol is added to such a PM$$^{n+}$$ complex solution and irradiated with an ultraviolet laser, the PM$$^{n+}$$ complex is electronically excited and reacts with the alcohol to be reduced to the neutral atom PM$$^{0}$$. The reduced PM$$^{0}$$ spontaneously aggregates in the solution to form fine particles. This process is called Laser-Induced Particle Formation (LIPF), and is used for the formation of precious metal nanoparticles and the recovery of precious metals from factory effluents. We have investigated the LIPF reaction mechanism of Rh$$^{3+}$$ ion complexes by in situ energy-dispersive X-ray absorption fine structure spectroscopy(XAFS). As a result of analyzing the obtained XAFS spectra, we found that Rh species with three oxidation numbers are involved in the Rh$$^{3+}$$reduction reaction, which proceeds from Rh$$^{3+}$$ to Rh$$^{int}$$ (intermediate) to Rh$$^{0}$$.

Oral presentation

Dispersive XAFS study on the laser-induced reduction of a Rh$$^{3+}$$ ion complex in a H$$_{2}$$O/EtOH solution

Saeki, Morihisa*; Matsumura, Daiju; Nakanishi, Ryuzo*; Yomogida, Takumi; Tsuji, Takuya; Saito, Hiroyuki*; Oba, Hironori*

no journal, , 

The reaction mechanism of the direct photo-reduction of a Rh$$^{3+}$$ ion complex to a Rh$$^{0}$$ species was studied using dispersive X-ray absorption fine structure spectroscopy. The time-resolved X-ray absorption near edge structure (XANES) showed the absence of isosbestic points. It suggested that more than two Rhn+ species contribute toward the reaction. We applied singular value deposition to the time-resolved XANES data and showed the contribution of three Rh$$^{n+}$$ species to the direct photoreduction. Next, in order to extract spectral information on the Rh$$^{n+}$$ intermediate, we analyzed the time-resolved XANES data using multivariate curve resolution analysis, which gives pure spectra and concentration profile of the Rh$$^{n+}$$ species. Finally, based on feature of the pure spectrum, we assigned the Rh$$^{n+}$$ intermediate to the Rh$$^{n+}$$ species.

9 (Records 1-9 displayed on this page)
  • 1